Potassium Starvation in Yeast: Mechanisms of Homeostasis Revealed by Mathematical Modeling

نویسندگان

  • Matthias Kahm
  • Clara Navarrete
  • Vicent Llopis-Torregrosa
  • Rito Herrera
  • Lina Barreto
  • Lynne Yenush
  • Joaquín Ariño
  • Jose Ramos
  • Maik Kschischo
چکیده

The intrinsic ability of cells to adapt to a wide range of environmental conditions is a fundamental process required for survival. Potassium is the most abundant cation in living cells and is required for essential cellular processes, including the regulation of cell volume, pH and protein synthesis. Yeast cells can grow from low micromolar to molar potassium concentrations and utilize sophisticated control mechanisms to keep the internal potassium concentration in a viable range. We developed a mathematical model for Saccharomyces cerevisiae to explore the complex interplay between biophysical forces and molecular regulation facilitating potassium homeostasis. By using a novel inference method ("the reverse tracking algorithm") we predicted and then verified experimentally that the main regulators under conditions of potassium starvation are proton fluxes responding to changes of potassium concentrations. In contrast to the prevailing view, we show that regulation of the main potassium transport systems (Trk1,2 and Nha1) in the plasma membrane is not sufficient to achieve homeostasis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptation to potassium starvation of wild-type and K+-transport mutant (trk1,2) of Saccharomyces cerevisiae: 2-dimensional gel electrophoresis-based proteomic approach

Saccharomyces cerevisiae wild-type (BY4741) and the corresponding mutant lacking the plasma membrane main potassium uptake systems (trk1,trk2) were used to analyze the consequences of K(+) starvation following a proteomic approach. In order to trigger high-affinity mode of potassium transport, cells were transferred to potassium-free medium. Protein profile was followed by two-dimensional (2-D)...

متن کامل

Potassium and Sodium Transport in Yeast.

As the proper maintenance of intracellular potassium and sodium concentrations is vital for cell growth, all living organisms have developed a cohort of strategies to maintain proper monovalent cation homeostasis. In the model yeast Saccharomyces cerevisiae, potassium is accumulated to relatively high concentrations and is required for many aspects of cellular function, whereas high intracellul...

متن کامل

Mathematical Modeling and Numerical Simulation of CO2 Removal by Using Hollow Fiber Membrane Contactors

Abstract In this study, a mathematical model is proposed for CO2 separation from N2/CO2 mixtureusing a hollow fiber membrane contactor by various absorbents. The contactor assumed as non-wetted membrane; radial and axial diffusions were also considered in the model development. The governing equations of the model are solved via the finite...

متن کامل

Photosynthesis Properties and Ion homeostasis of Different Pistachio Cultivar Seedlings in Response to Salinity Stress

Understanding mechanisms of salt tolerance, physiological responses to salt stress, and screening genotypes for breeding programs are important scientific issues remained to be investigated in pistachio. Therefore, current study was carried out to investigate response of different pistachio cultivars (G1, G2, Kaleghochi and UCB1) to salinity treatments (0.6 as control, 10, 20 dS m-1 using salin...

متن کامل

Mathematical Modeling of Single and Multi-Component Adsorption Fixed Beds to Rigorously Predict the Mass Transfer Zone and Breakthrough Curves

The aim of the present work is to prepare an adsorption package to simulate adsorption / desorption operation for both single and multi-component systems in an isothermal condition by different mechanisms such as; local adsorption theory and mass transfer resistance (rigorous and approximated methods). Different mass transfer resistance mechanisms of pore, solid and bidispersed diffusion, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012